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tories and the resulting upstream cells (polygons) are approximated with great-circle arcs.
Biquadratic polynomial functions are used for approximating the density distribution in
the cubed-sphere grid cells. The upstream surface integrals associated with the conserva-
tive semi-Lagrangian scheme are computed as line-integrals by employing the Gauss-
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1. Introduction

Green theorem. The line-integrals are evaluated using a combination of exact integrals
and high-order Gaussian quadrature. The upstream cell (trajectories) information and
computation of weights of integrals can be reused for each additional tracer.

The CSLAM scheme is extensively tested with various standard benchmark test cases of
solid-body rotation and deformational flow in both Cartesian and spherical geometry, and
the results are compared with those of other published schemes. The CSLAM scheme is
accurate, robust, and moreover, the edges and vertices of the cubed-sphere (discontinu-
ities) do not affect the overall accuracy of the scheme. The CSLAM scheme exhibits excel-
lent convergence properties and has an option for enforcing monotonicity. The advantages
of introducing cross-terms in the fully two-dimensional biquadratic density distribution
functions are also examined in the context of Cartesian as well as the cubed-sphere grid
which has six local sub-domains with discontinuous edges and corners.

© 2009 Elsevier Inc. All rights reserved.

The transport problem in computational fluid dynamics can either be cast in Lagrangian, Eulerian or in Arbitrary Lagrang-
ian-Eulerian (ALE) form [1]. Lagrangian methods let the mesh travel and evolve with the fluid throughout the integration
whereas Eulerian methods use a fixed mesh. Both methods have their strengths and weaknesses. The ALE method was devel-
oped in an attempt to combine the advantages of the Eulerian and the Lagrangian approaches by letting the mesh move in
any prescribed manner as an extra independent degree of freedom. A popular choice of prescribed mesh movement is to run
in Lagrangian mode for one time-step and then regrid (interpolate) back to the static and regular (Eulerian) mesh. In mete-
orological literature this approach is known as the semi-Lagrangian method [2]. A comprehensive review of conservative
semi-Lagrangian methods are given in [3,4], and a stability analysis of these schemes is presented in [5].
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At every time-step, the semi-Lagrangian approach involves regridding (interpolating) quantities from a distorted
Lagrangian mesh to a regular Eulerian mesh or vice versa, depending on the trajectories. Hence the transport problem is re-
duced to a regridding problem if the Lagrangian mesh movement is prescribed. For a variety of reasons it is desirable that the
regridding procedure is conservative and monotonic. Conservative regridding is often referred to as remapping or rezoning.
The problem of remapping quantities between arbitrary grids, which involves integration over overlapping areas between
the grids, has received considerable attention in the literature due to its many applications. In general direct integration over
arbitrary overlap areas is not practical. Through the pioneering work of Dukowicz [6,7] and Ramshaw [8] the remapping
problem has been made practical by the application of Gauss-Green’s theorem which converts area-integrals into line-inte-
grals. This approach has been applied for up to second-order static grid-to-grid remapping in [9] and later the method was
extended to third-order and optimized for the regular latitude-longitude and cubed-sphere grids [10].

In most atmosphere and ocean modeling applications the continuity equation must be solved multiple times for fluid
density as well as dozens of tracers (chemical species). For example, the chemistry version of NCAR’s Community Atmo-
spheric Model (CAM) model [11] uses on the order of 100 prognostic tracers [12]. Therefore it is highly desirable that the
numerical algorithm used for tracer transport is efficient and adaptable for a large number of tracers. In [13] an incremental
remapping algorithm based on the semi-Lagrangian technique has been introduced for multi-tracer transport. Although
incremental remapping has a high startup cost associated with geometry calculations, each additional tracer adds only a rel-
atively small cost. The CSLAM algorithm considered herein follows this strategy.

Traditionally the regular latitude-longitude grid has been the preferred choice for global atmospheric models. However,
models based on such grid system may have scalability issues. The scalability problems are either rooted from the non-scal-
able global numerical methods or the application of non-local polar filters. To address these problems, the atmospheric mod-
eling community is developing numerical models based on more isotropic spherical grid systems that are free from
singularities or contain weaker singularities. Also these grid geometries are amenable to local numerical methods such as
the finite-volume method or element-based high-order Galerkin methods. The cubed-sphere geometry introduced by Sado-
urny [14] offers many computationally attractive features. Recently the cubed-sphere (spherical cube or expanded cube)
geometry has been reintroduced in [15,16] with additional desirable features such as the equi-angular grid-spacing or
orthogonality. Here we consider cubed-sphere grids based on the central (gnomonic) projection.

In this paper we optimize the more general method of Dukowicz [6,7] for transport on the cubed-sphere grid in two ways.
Firstly, instead of using constant cell densities as in [6,8] or linear reconstructions of cell densities as in [7,9,17-19], we use
the fully two-dimensional biquadratic reconstruction functions with a monotone option. Secondly, we exploit that for the
gnomonic cubed-sphere grid it is possible to evaluate line-integrals along coordinate lines exactly [10]. Contrary to the incre-
mental remapping algorithm, CSLAM is designed to allow for long time-steps with Courant numbers exceeding unity.

This paper is organized as follows. In Section 2 we introduce the CSLAM algorithm in Cartesian geometry. This involves
defining the transport problem and introduce the notation required to mathematically describe the Lagrangian grid, in par-
ticular, the overlap regions between the static mesh and the Lagrangian grid. The conversion of area-integrals into line-inte-
grals using Gauss-Green’s theorem is described with details including the analytic integration of two-dimensional
polynomial reconstruction functions. In Section 3, CSLAM is extended to the cubed-sphere geometry. Section 4 show results
for standard test cases in Cartesian and spherical geometry. We will summarize the findings in Section 5.

2. Cartesian geometry

The two-dimensional transport equation for a tracer, in the absence of sources or sinks, can be written as

d

(e.g., [13]) where  is the density (typically the product of the air density and the tracer concentration per unit mass), and the
integration is over an arbitrary Lagrangian area A(t) at time ¢, that is, an area that moves with the flow with no flux through
its boundaries. A temporal discretization of (1) along the characteristics is

Lo ven= | vaa 2)

where At is the time-step size.

In a semi-Lagrangian method either A(t + At) or A(t) is a static grid cell, or equivalently, either upstream (backward tra-
jectories) or downstream (forward trajectories) cell tracking is used. Here we use the upstream approach so that A(t + At) is
a regular grid cell. Using the two-time level semi-Lagrangian terminology, A(t + At) is referred to as the arrival (or Eulerian)
cell and A(t) the departure (or Lagrangian) cell.

In a two-dimensional Cartesian orthogonal grid system, let A, be the kth (Eulerian) grid cell, where k = 1, ..., N, such that
N is the total number of cells in the domain Q. The departure cell corresponding to the arrival cell A, is denoted by a, (see
Fig. 1). Note that there exists a one-to-one correspondence between departure and arrival cells such that the departure cells
span Q without gaps or overlaps between them,
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Fig. 1. A schematic illustration of concepts used in the semi-Lagrangian finite-volume scheme. (a) The deformed departure cell a, (dark shaded area) ends
up, after being transported by the flow for one time-step, at the regular arrival cell A, (light shaded area). The trajectories for the cell vertices are shown
with arrows, and the departure and arrival cell vertices are marked with filled and open circles, respectively. (b) Illustrates the overlap region between the
grid cell A, and the departure cell g, referred to as a,, used for the upstream integral computation given in Eq. (4).

N
Ua=9 and ana =0, Vk#,

where g, is assumed to be a simply connected region on Q. For a cell-integrated semi-Lagrangian method, as the one con-
sidered here, it is required that the trajectories should not cross during the time-step At [20].

For the discretization of (2) we need to define the overlap regions between the departure cell a; and the Eulerian grid cells
A, £=1,...,N. Let ay, be the non-empty overlap region between departure cell a, and grid cell A, such that

Qe =ayNA, au#0; ¢=1,...,L;, and 1<L, <N,

where L, is the number of non-empty overlap regions between departure cell a, and the Eulerian grid cells. L, depends on the
characteristics of the flow and time-step size.
The semi-Lagrangian finite-volume version of the discretized transport Eq. (1) for ¢ can be written as follows:

Uit AA = g Sy 3)

(e.g., [21]) where y*! is the average tracer density in cell k at time-level n + 1 (i.e., t = (n + 1)At); AA, and éay is the area of
the arrival and departure cell A, and a;, respectively, and ;" is the average density in the departure cell.

To compute the mass in the departure cell from known cell average values y#, ¢ =1,...,N, in a higher-order and conser-
vative manner, one needs to construct a continuous sub-grid-scale representation of y within each Eulerian cell with mass-
conservation as a constraint. The sub-grid-scale reconstruction in a cell ¢ is denoted f;(x, y). The integral over the departure
cell can be broken up into the sum of integrals of f;(x,y) over non-empty overlap regions a, as follows:

W= 3 [ [ nxyaa @)

=1

Note that no approximations have been made at this point.
Since the departure cells a, span the integration domain 2 without gaps or overlaps global mass is conserved as long as
the reconstructions f;(x,y) satisfy

//f@(x,y)dA:zhAA@ for¢=1,...,N.
A

For general (smooth) flows the boundary of the departure cells are smooth curves rather than straight line segments, as is the
case for the arrival cell walls. Only in simple cases such as for pure translational (non-divergent) wind fields the analytic
departure cell boundaries consist of straight line segments but in general the departure cell sides must be approximated.
To address this problem several approaches have been taken in the literature (see Fig. 2.10 in [3] and Fig. 2 in [22] for illus-
trations). Most methods track cell vertices moving with the flow and approximate the departure cell sides from the location
of these vertices. Probably the most straight forward cell approximation results from connecting the cell vertices with
straight lines (Fig. 2(a)).

To improve the representation of any particular Lagrangian cell edge one may approximate it with piecewise straight
lines, that is, introduce more Lagrangian parcels along the cell sides and connect them with straight lines. By increasing
the number of points tracked along each cell side one would converge towards the analytic departure cell (see Fig. 2). It
is beyond the scope of this paper to investigate such an approach, that is, we simply approximate the cell sides with straight
lines connecting the vertices of the departure cell. Hence the region a; is a quadrilateral.
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(a) (b) (© (d)

Fig. 2. Schematic illustrations of possible approximations to the analytical departure cell boundary (solid curved line) using different levels of refinement
with piecewise straight lines. (a) The approach used in this paper connects the four vertices of the departure cell (filled circles) with straight lines. To
improve the approximation to the departure cell one may introduce (b) one, (c) two or (d) three Lagrangian points along the cell sides (unfilled circles) and
connect these by straight line segments to converge towards the exact departure cell boundary.

2.1. Upstream integrals

The sub-domains ay, over which must be integrated can have many possible shapes (Fig. 3). The practical difficulty in
developing analytical integrals that cover all possible cases is, in general, somewhat complicated but not impossible [23].
Instead the problem can be greatly simplified by converting the area-integrals into line-integrals by appropriate use of
the Gauss-Green theorem [6].

2.1.1. Lagrangian cell boundary computation (search algorithm)

Suppose the trajectories for the vertices of a, are given. Finding the location of the vertices of a;, basically reduces to the
computation of intersections between coordinate lines (sides of A,) and lines of arbitrary orientation (sides of a,,). Only three
intersection scenarios are possible when marching counter-clockwise along a side of a,,: Intersection with a horizontal coor-
dinate line (Fig. 4(a)), intersection with a vertical coordinate line (Fig. 4(b)) or intersection with a vertex of A, (Fig. 4(c)). The
coordinates of the crossing are simply the location of the intersection between straight lines. Let N, be the number of vertices
of ay,. The coordinates of the vertices of the polygon ay, are denoted (Xi., Vi), h=1,...,N;, and are numbered counter-
clockwise (Fig. 5). The first subscript k refers to the kth departure cell to which a, belongs, ¢ refers to the fact that
(Xkeh, Yien) 1s @ vertex in the grid cell A, and h is the local index for the numbered vertices of ay,.

(a) (b)

Akt p—0y /T

Ag Aé

Fig. 3. A schematic illustration of some of the possible shapes the polygons ay, (shaded areas) may take depending on the location of the departure points
(filled circles). The number of vertices can be (a) 3, (b) 4, (c) 5, (d) 6 and even more depending on the flow and time-step.
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Fig. 4. A schematic illustration of the three possible intersections between a departure cell side and the coordinate lines. In (a) and (b) a horizontal and
vertical grid line is intersected, respectively, and in (c) a vertex of an Eulerian cell is intersected. The resulting line segment is one of the sides of the polygon
ay, that defines the overlap area between Eulerian cell Ay and departure cell ay.

(Tke, N, » Yo, Ny )

(xkas,yka3)

(Tre,1, Yre,)

(Tke,2, Yke,2)

Fig. 5. A schematical illustration of the coordinates and numbering of the boundary of a,, with four vertices (N, = 4).

() (b) (c)

Fig. 6. A schematic illustration of the search algorithm used to define the overlap regions a,, between the departure cell (vertices marked with filled circles)
and the Eulerian cells A,. (a) First the intersections between Eulerian grid lines and the sides of the departure cell a, are computed (crossings marked with
stars). (b) The line segments along the sides of the departure cell a;, referred to at outer line segments (indicated with arrows), are stored. (c) Thereafter the
inner line segments along the coordinate lines and enclosed in a; are stored (indicated with arrows).

The algorithm works as follows:

1. Compute all intersections between grid lines and the four sides of the departure cell a, by marching counter-clockwise
along the sides of the departure cell (Fig. 6(a)).

2. All segment coordinates along the sides of the departure cell g, are temporarily stored as well as the index of the Eulerian
cell A, in which the line-segment is located. We refer to these segments as outer line-segments (Fig. 6(b)). Note that the
computation of the index of the Eulerian cell A, in which the segment is located does not need an extensive search algo-
rithm since when marching along the sides of the departure cell we move between adjacent cells (Fig. 6(b)).
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3. The coordinate line crossings can also be used to define the line-segments along coordinate lines enclosed by ay, (Fig. 6(c))
by marching along the coordinate line on which a crossing occurs until the next crossing is encountered. We refer to these
lines as inner line segments. Note that a; is a quadrilateral so the departure cell sides can only cross a particular coordi-
nate line once. Marching along all coordinate lines that are intersected by a side of a, defines all the inner line segments.
The line-segment coordinates are registered counter-clockwise so if a line-segment is oriented from left to right in a par-
ticular cell the line-segment is registered from right to left in the cell above. As for the outer segments the index of the
Eulerian cell in which the segment belongs is temporarily stored.

4. The outer and inner line-segments complete the definition of a,. Special attention must be given to situations in
which the inner and outer line segments coincide. In such a situation the segment must, of course, only be registered
once.

This defines the boundary of all the overlap polygons a,, which will be used for computing the line-integrals.
2.1.2. Converting area-integrals into line-integrals (weights)

In order to evaluate the upstream integrals over the Lagrangian cells efficiently we employ Gauss-Green'’s theorem: for
the simply connected regions ay, the following integral equation holds:

[ | fxyaxdy = § (pax-+Qay) (5)
Ay day,
where dqy, is the boundary of a,,. The functions P = P(x,y) and Q = Q(x,y) are chosen such that they satisfy:
oP 9Q
oy + X fi(x,y)

In general, a third-order polynomial reconstruction function in Eulerian cell A, can be written as

filxy) = > CPx =Xy = Yo, (6)

i+j<2

where C% are coefficients of the biquadratic polynomial (6) ensuring conservation (e.g., [23,24]), and (X,, Y,) is the centroid
of cell ¢. Henceforth i,j € {0, 1,2}. Collecting terms of the same order x'y/ in (6) yields

=" Uy, (7)
i4j<2

where ¢ are derived coefficients. Then the integral of the polynomial reconstruction function f,(x,y) in (7) can be writ-
ten as

// fix,y)dxdy = Z cwi (8)

i1j<2

where w{/’ is given by
wy” =5 Z Xieh + Xien-1) Vien = Yieh 1) 9)
W§<1[O 6 Z (Xk/h + XkenXieh-1 + Xeop_ )(J/w,h = Yren-1) (10)

1 »
wy! = 76 2 (J’kzh + YienYien-1 + Yien- 1>(Xké,h — Xkeh-1) (11)
1 M

wi” =1 hZ Xkeh + Xkeh-1 (Xﬁz,h +sz,hq) Yken = Yieh-1) (12)

Ny
wy? = 12 Z Yien + Yioh- )()’ﬁz,h +y£é‘,h71> (Xkeh — Xkeh-1) (13)

W;y 24 Z { [ykéh (3xk£h + 2Xu hXin 1 + Xy 1) + Yieh- 1<Xklh + 2% nXkeh o1 + 3K 1)] X (Vien _ykah—1)}7 (14)

where (Xwn_1, Yien1) and (Xen, ¥i,n) are contiguous points (defining a line segment) and the index h is cyclic so that h =0
equals h = Nj,. Note that after having computed the weights the detailed line-segments information (X, ) is no longer
needed.
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The weights w{ given in Egs. (9)-(14) have been derived by using (5) with the following pairs (P*, Q"/):
<P(0.0) —0,Q90 — X),
pio _ g o — X_z>
b 2 b

p0) _ o Q(Z.O) _ X_3>
b 3 b

po2) _ Qoz >

(1) _ m),"_y
(P -0t - 2).

Note that the choice of P and Q is not unique - here we haven chosen P and Q as in [25]. Clearly the method easily generalizes
to high-order given the reconstruction coefficients c/-.

2.2. Final discretized transport equation

Using (3) and (4) the discretization scheme corresponding to conservative semi-Lagrangian transport can now be written
as

Ly
VI AA, = Z // filx,y)dxdy = Z {Z i ] (15)

=1 Li+j<2

The reconstruction coefficients cf,ij) are derived from known cell average values /". Here we use the piecewise-parabolic
reconstruction method in each coordinate direction as in [21] to obtain c{*?, ¢{"?, ¢®V ¢?® and c®* and the cross term
CEH) is computed as in [26].

It is worth noting the separation of the weights W}fj from the reconstruction coefficients cﬁij) in (15). In practice this sep-
aration implies that once the weights have been computed they can be reused for the integral of each additional tracer dis-
tribution at a given time-step. Hence the transport of additional tracers reduces to the multiplication of precomputed
weights and reconstruction coefficients similarly to the incremental remapping algorithm and traditional non-conservative

semi-Lagrangian schemes.

3. Extension to the sphere
3.1. Gnomonic cubed-sphere grid

For the present study we consider cubed-sphere grids resulting from equi-angular gnomonic (central) projection
T E]

4’40

where « and f are central angles in each coordinate direction, r = R/+/3 and R is the radius of the Earth [15]. Without loss of
generality we assume r = 1. For a schematic illustration of the gnomonic projection/coordinates see Fig. 7. A point on the

sphere is identified with the three-element vector (x,y,v) where v is the panel index (Fig. 8). Hence the physical domain
S (sphere) is represented by the gnomonic (central) projection of the cubed-sphere faces, Q) = [-1,1]*, v=1,2,...,6, and

x=rtano and y=rtanp; oc,[fe[— (16)

where the panel domains Q" are non-overlapping and the cube edges are discontinuous. Note that any straight line on the
gnomonic projection (x, y, v) corresponds to a great-circle arc on the sphere. In the discretized scheme we let the number of
cells along a coordinate axis be N, so that the total number of cells in the global domain is 6 x N?. Note that the equi-angular
cubed-sphere grid is orthogonal only at the center of each panel (6 points) elsewhere it is a non-orthogonal curvilinear
coordinate.

3.2. Patch boundaries

One advantage of the cubed-sphere geometry is that the interior of panels can be treated as in Cartesian geometry. How-
ever, it is required to consistently couple the panel discretizations for the global domain.
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(b)

Fig. 7. (a) A schematic illustration of the gnomonic coordinate. For simplicity only the y = r tan g and -coordinates of the gnomonic projection are shown
for one of the equatorial panels of the cubed-sphere (v =1,2,3,4). A point on the sphere (4,0) has the gnomonic y coordinate given by the intersection
(filled circle) between face v of the inscribed cube (thick lines) and the straight line (dashed line) connecting the point on the sphere and the center of the
sphere (unfilled circles). The central angle g for (/,0) is given by the angle between the normal vector for the face and the dashed line. Solid straight lines
show coordinates for the center (8 =y = 0) and edges of the panel (y = +1, f = +7/4). (b) shows the control-volumes on the surface of the sphere for the
equi-angular cubed-sphere grid with N, = 5. Equi-angular refers to the fact that the increment in o (and g) for adjacent coordinate lines is constant
(Ao = AB).

(b) (c)

Fig. 8. (a) The edges of the cubed-sphere grid plotted on the sphere (solid lines). Dashed lines show latitudes and longitudes. (b) The inscribed cube and (c)
the numbering convention for the panels of the cube used in this paper. The Greenwich meridian line (1 = 0) divides panel v =1 in two.

In this Section we first discuss how the panel boundaries are treated in CSLAM. The mechanism for mass flux exchange
between panels is then presented and finally we derive the spherical line integral formulae.

3.2.1. Departure cells

All computations are performed on the gnomonic projection in (x, y, v)-coordinates so that the algorithm for Cartesian
geometry described earlier can be employed. As in the Cartesian case we connect the departure points with straight line seg-
ments. As mentioned previously, by doing so in the gnomonic projection the sides of the departure cells are great-circle arcs
on the sphere. For cells that stay completely on a panel when being transported by the flow (for one time-step) the overlap
areas ay, are defined exactly as in the Cartesian case. The question then becomes how to deal with the cells that traverse the
edges of the cube. Since the CSLAM scheme is fully two-dimensional it is possible to treat cells that cross panel edges in a
rigorous two-dimensional manner that adds a minor complexity to the algorithm as compared to the Cartesian case.

For a particular panel v we introduce a halo zone around the panel and treat the halo cells on the same projection as panel
v (Fig. 9). An algorithm for identifying indices of neighboring cells across panel sides is, for example, given in [27]. As an illus-
trative example consider a 1-cell halo zone and a resolution of N. = 9. Fig. 9(a) shows the Eulerian cells on the gnomonic
projection for panel v (solid lines) as well as the halo cells (dashed lines). Since the sides of any grid cell on the cubed-sphere
are great-circle arcs also the halo cell sides are straight lines on panel v's gnomonic projection. The halo cell sides are, how-
ever, not necessarily aligned with panel v grid lines.

We compute the departure points for the grid cell vertices on panel v as well as for the grid cell vertices of the halo zone
cells. The departure points connected by straight lines are shown on Fig. 9(b).

Next we restrict the overlap areas a;, to panel v:

a) =a,n QY (17)

so that the panel v restricted departure area is given by
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(@ (b) (c)

.

T T -r r -r r

Fig. 9. (a) The grid lines for a panel v as projected onto a plane (solid black lines) and the halo zone grid lines from adjacent faces plotted on panel v's
projection (dashed lines). The boundary of panel v is marked with the thick solid (red) line. (b) The departure grid corresponding to the arrival grid shown
on (a) for the moving vortices test case using a time-step of 5 h. (c) The departure grid ‘clipped’ so it is limited to panel v. (For interpretation of the
references in colour in this figure legend, the reader is referred to the web version of this article.)

Ly
a - (U am> o, (18)
=1

The superscript (v) on the left-hand side of (17) and (18) refers to the fact that a,, and g, have been restricted to panel v. The
‘clipping’ procedure is graphically shown on Fig. 9(c). Note that by ‘clipping’ the parts of departure areas that are not located
on panel v the departure cell is no longer guaranteed to be a quadrilateral but can be a simply connected polygon. This does,
however, not add any particular complexity to the algorithm as compared to the Cartesian case. It is noted that a,ﬁ") with an
appropriate width of the halo zone spans panel v without overlaps.

3.2.2. Panel mass-exchanges

The procedure of mass-exchanges between panels is described by example. Consider the situation when a departure cell
is located over the edge of the cube, for example, as shown in Fig. 10, where the departure cell corresponding to the arrival
cell in the upper-right corner of panel 1 span panels 1, 2 and 6 marked with patterns ‘hatched’, ‘hexagon’ and ‘zig-zagged’,
respectively, on Fig. 10(a). The mass in a,ﬂ” = a, N Q" is computed by integration on panel 1 (‘hatched pattern’ on Fig. 10(a)).
The masses in the parts of the departure area that overlap panels 2 and 6 will correspond to masses over areas that ‘entered’
from halo cells of these panels (Fig. 10(b) and (d)) and are computed on those panels. When updating the amount of mass
ending up in the arrival cell in question the masses computed on neighboring panels 2 and 6 must be added to the mass over
the ‘hatched pattern’ cell on panel 1. This is done similarly to the index association used to identify neighbors to Eulerian
cells on the panel sides. Note this procedure for handling the sides of the panels allows for large CFL numbers as long as
the halo zone is chosen wide enough.

3.3. Line-integrals on the cubed-sphere

Let ¥ be a vector field with contravariant components ¥, and ¥, in the direction of the unit basis vectors (e, e)), i.e.,
¥ = Y,.e, + ¥,e,. Following [10] Gauss-Green'’s theorem for the vector field ¥ in gnomonic coordinates can be written as

/ V-‘l’dV:—}z{ (#dy + P, dy], (19)
[ day,

where

~ b4 ~ b4
Yy=——-— and Y¥,= 4

pV1+y? pVT+x2
with p = /1 + x2 + y2. Here, the divergence operator is given by

oWy, 0%,

.:3
V‘Ppax ay

. (20)

As usual, the contour integral is taken in the counter-clockwise direction around the boundary of a given overlap area a,.
Again we consider sub-grid-cell reconstructions of up to third-order of the form (6) but now X, and Y, refer to the x and y
components of the Eulerian cell centroids defined by

1 1

¢ JA, ‘.

In practice, these quantities are computed by transforming the area integrals to line-integrals via Gauss-Green’s theorem.
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(a) (b)y e
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logical space
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Fig. 10. A schematical illustration of how mass is exchanged between panels. (a) shows the gnomonic projection on the inscribed cube of the Eulerian cells
(dashed lines) and a departure cell on the edge of the inscribed cube (deformed cell with vertices marked with filled circles) corresponding to an arrival cell
located in the upper-right corner of panel 1 (unfilled circles connected with thick lines). (b-d) Illustrate how the mass-exchange between the panels is
handled in logical space for panels 6, 1 and 2, respectively. See text for more details.

In order to apply the Gauss-Green theorem to compute the integral of f,(x, y) over a;, we need to determine a ¥/ so that

V) = Xyl 21)
By choosing ¥\ = 0 this reduces to solving the equation

[ Xyl

—_ i) =27

oy (737) 07 (22)

Note that even with the aforementioned simplification ‘T’y is still not unique as there is a family of potentials ¥ that satisfy
(22), that is, we may freely choose an additive constant that will play no role in the final calculation. Also, one may solve (22)
in terms of either central angle or gnomonic coordinates, which are connected via the relation (16). In either case one will
obtain identical expressions for the potentials:

FOOY) =1 2 (23)
HOXY) =1 z. (24)
PO (x,y) = 7%, (25)
SR )
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§02) -y i h( Y ) 27
v (x,Y) ) + arcsin ) (27)

= X

Py) ==, (28)

(see [10], for the corresponding formulas given in terms of central angle coordinates). Substituting the expressions (23)-(28)
into (19) and taking the line-integrals yields the area-integrals of the terms x'y/. For lines that are parallel to the coordinate
axis the line-integrals can be computed exactly (see [10]), that is, for lines of constant y:

(0.0) _ Xy

1°9(x,y) = — arctan (p)’ (29)
>, (30)
129 (x,y) = —yarcsinh | ———— | — arccos x Y (32)

19, y) = arcsinh<

1V (x,y) = arcsinh(

199 (x,y) = —xarcsinh< Y > — arccos A A 33
(*.9) i % N ES o e G3)
1"V(x,y) = p, (34)

where
19 (x,y) = —/ P, dx.

Since we have chosen ¥, = 0 lines of constant x give zero contribution which, in general, results in having to compute half
the number of inner line-integrals compared to a non-zero choice of ¥,.

For arbitrarily oriented lines closed form line-integration is not straight forward and it is most likely computationally
cheaper to evaluate the line-integrals with Gaussian quadrature. Herein we compute lines parallel to the coordinate lines
using exact integration (as with all inner integrals) and all other line-integrals are approximated using Gaussian quadrature.
As (23)-(28) are rather smooth and slowly varying functions over a cell side, relatively low order quadrature is sufficient (see
results in Section 4).

Note that summing all outer line-integrals (except when departure cell sides coincide with grid lines) yields zero since a
line-integral along a particular side of a cell is exactly equal to the line integral along the same side shared with the adjacent
cell but with opposite sign. All inner line-integrals do, however, not cancel since the sub-grid-cell distribution is discontin-
uous across grid cell sides. The inner line-integrals collectively yield the total mass in all grid cells (to machine precision).

3.4. Sub-grid-cell reconstructions on the sphere

The coefficients for the mass-conservative reconstruction polynomial cﬁm are described in detail in [10] so only a brief
overview will be given here. Basically the coefficients are defined in terms of a Taylor expansion

clid) — (ai,ﬂf ) . (i.j) # (0,0), (35)
¢

XYl

and by choosing the constant term so that mass is conserved

=ity (g J;) (x2-m =°>) +3 <§y§> (Y2 -mP) + <%>‘<xm-m§1-”), (36)
;

where mj‘” are the area-averaged moments defined by

w_ 1 [
m =5 [ xvan 7
Obviously the derivatives in (35) must be estimated and several options were explored in [10]. We use a non-equidistant
parabolic interpolation procedure in gnomonic (x,y)-coordinates to estimate the gradients (see [10] for details).

In order to compute coefficients near the panel boundaries information from neighboring panels is needed, however, the
average values on neighboring panels are not aligned with the cells on the panel in question (see Fig. 9). To apply the dis-
cretization formulas the values in the halo cells that would be obtained by extending the panel in question outwards are
needed. Here we use a one-dimensional non-conservative fourth-order non-conservative interpolation to obtain halo cell



values from the neighboring cell average values [10]. Note that this interpolation procedure does not need to be conservative
since any choice of coefficients cj“” will yield mass-conservation through (36).

3.5. Discretized transport equation on the cubed-sphere

The CSLAM transport scheme on the cubed-sphere in analogous to the Cartesian version (15):

Li L
iTAM=3 {Z c&'”wi‘ﬂ} , (38)

=1 |ig<2

where the area of the regular (Eulerian) grid cells AA, can be computed using the formulas in Appendix C of [28] (note that
inverse cosine is missing on the right-hand side of equation C3 in [28]
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4.1. Experiments in Cartesian geometry

Here we consider two standard advection tests which are solid-body rotation and deformational flow. The results for
the experiments in Cartesian geometry are compared to published conservative semi-Lagrangian schemes: SLICE [29],
CCS [30] and CISL [21]. The SLICE and CCS schemes are cascade schemes in which the two-dimensional transport prob-
lem is cast into two one-dimensional sweeps; one in a coordinate direction and the other along the deformed Lagrangian
coordinate that is initially orthogonal with the first sweep. The CISL scheme uses a fully two-dimensional cell approx-
imation but does not connect the departure vertex points with straight lines but the cell is approximated with line-seg-
ments that are parallel to the coordinate axis (see Fig. 2 in [22]). For this flow the CSLAM scheme uses an exact
approximation to the departure cells. For each sweep in the cascade schemes and in each coordinate direction of the
CISL and CSLAM schemes, the piecewise parabolic method is used [24]. There are different versions of the SLICE scheme
depending on which sub-grid-scale reconstruction method is used for the cascade sweeps: The piecewise cubic method,
SLICE(PCM), using cubic polynomials, and SLICE(PPM) and SLICE(PSM) using the piecewise parabolic method and piece-
wise spline method [31], respectively. Contrary to CISL the CSLAM scheme also includes a cross term which is approx-
imated as in [26].

4.1.1. Solid-body advection of a slotted cylinder and cosine hill

For the solid-body rotation tests the Zelasak’s slotted cylinder [32] and cosine hill (see, e.g., [29]) are used. The flow
rotates about the center of the domain with an angular velocity so that one revolution is completed in 96 and 71
time-steps for the slotted cylinder and cosine hill test cases, respectively. A domain of 100 x 100 grid cells is used with
grid-spacing Ax = Ay =1 (AA;, = 1) for the slotted cylinder test case. For the cosine hill a much coarser resolution of
32 x 32 grid cells is used. The specific parameters for the analytic solution (including the initial distribution) are given
in [29].

Fig. 11 shows surface plots of the CSLAM solution after one revolution for the slotted cylinder and cosine hill test cases,
respectively. Standard error measures are given in Tables 1 and 2 as well as the performance measures for other published
mass-conservative semi-Lagrangian schemes. All schemes use analytical trajectories.

First of all it is noted that the relative performance of the schemes is similar when comparing error measures based on
the same y¢ (either point values or cell-averages) and that the error measures decrease when using the cell average for y¢
compared to using the point value. So the conclusions are independent of the choice of /¢ in the error norms as long as the
error norms are computed consistently. CSLAM performs better than CISL in all test cases and error measures. Compared
to the cascade schemes CSLAM performs better or worse depending on the test case and type of reconstruction function
used. Note that the cascade schemes may in certain cases have a more accurate representation of the diagonal variation
since the second remapping is along the Lagrangian coordinate lines and not along coordinate lines [22]. This might give a
better representation of diagonal variation than the cross-term in the fully two-dimensional reconstruction used in
CSLAM.

To assess the importance of the cross-term in CSLAM the test case was also run without it (CSLAM™). As a results the error
measures worsen by a few percent for the slotted cylinder test case and by approximately 15-19% depending on the error
measure for the cosine hill test case.

4.1.2. Idealized cyclogenesis

The idealized cyclogenesis problem introduced by [34] is used as a standard scalar advection test [23]. The flow is highly
deformational challenging other aspects of the scheme than the ability to transport distributions as solid bodies. The test
case consists of a circular vortex that forces the initial condition to curl up into thin filaments with steep gradients
(Fig. 12). A complete test case description is, for example, given in [29]. Standard settings are used: domain size is
128 x 128 cells, At =0.3125, Ax = Ay = 0.078125 and the test is run for 16 time-steps (corresponding to 5 time units).

Standard error norms are given in Table 3. The fully two-dimensional CSLAM scheme is slightly superior followed by CISL
and SLICE in terms of standard error measures. Excluding the cross term in CSLAM only has a minor effect on the accuracy.

(a)

(b)

Fig. 11. Surface plots of the CSLAM solution to the solid-body advection of (a) a slotted cylinder and (b) a cosine hill, respectively, after one revolution.



4.2. Test cases on the sphere

We show results from three test cases in spherical geometry commonly used in the meteorological literature. Unfortu-
nately, various authors choose different parameters for the same test cases. Therefore we run each case with different
parameters to facilitate the comparison with published schemes. The test cases are defined below.
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Table 3
Same as Table 1 but for the cyclogenesis test case.
Y€ = point value at center ¢ = approximate cell average

Scheme RMS I I I RMS I 15 I
Idealized cyclogenesis in Cartesian geometry
CSLAM 0.0642 0.0113 0.0646 0.8802 0.0272 0.0059 0.0275 0.3262
CSLAM* 0.0653 0.0116 0.0656 0.8777 0.0285 0.0062 0.0287 0.3363
SLICE(PPM) 0.0701 - - - 0.0317 - - -
SLICE(PCM) 0.0693 - - - 0.0311 - - -
CISL 0.0666 0.0119 0.0670 0.8737 0.0304 0.0065 0.0307 0.3598

4.2.1. Solid-body advection of a cosine hill
The wind field that will transport a distribution along a great-circle without distorting it is given by [35]

U = 1y(cos ¢ cos 0 + sin ¢ cos Asin 0), (44)
v = —Upsin@sin i, (45)

where u and v are the velocity components in the longitudinal (1) and latitudinal () directions, respectively,
uo = 2mR/(12 days) and ¢ is the rotation angle (flow orientation parameter), and R is the radius of the sphere. When
@ = 0 the flow is oriented along the equator, and when ¢ = /2 the flow is along the pole-to-pole direction resulting in
cross-polar advection. The flow field is non-divergent and translates the solid-body along a great-circle without incurring
any deformation so that the final solution after 12 model days should exactly match the initial condition. The initial condi-
tion for the solid-body (or scalar field ) is a ‘cosine hill’ defined as follows [35]:

V(i 0) = {% [1+ cos (5)]. iRy <Re
0, if Ry > R,

where R, is the radius of the hill and R, is the great-circle distance between (4, 0) and the center of the distribution (i, 6.),
R = arccos]sin 0. sin 0 + cos 0, cos 0 cos(4 — Ac)],

and (4, 0c) = (3m/2,0) so that initially the cosine hill is located at the center of an equatorial panel (v = 4). When trans-
ported with ¢ = m/4, the cosine hill passes through the discontinuous regions containing two edges and four vertices of
the cubed-sphere, and this is a more challenging parameter setting for advection on the cubed-sphere than, for example,
¢ = 0 [36]. Note that the cosine hill is only C° at the base of the hill.

Note that for the spherical semi-Lagrangian solid-body advection, the analytic trajectory origins (or departure point posi-
tions) (44, 04) can be determined without the knowledge of wind fields (u, ») if the angular velocity ;s of solid-body rotation
is known. In order to compute exact trajectory origins, however, a flow dependent rotated spherical coordinate system (/' 6')
with respect to the regular (4, 0)-sphere is required. The exact trajectory origins are then given by (1 — w;At, &) on the ro-
tated sphere which corresponds to the exact upstream position (4, 04) on the regular sphere (see [37] for details).

Several different parameters for this test case are used in the literature. We will use the following:

1. The cosine hill with dimensions R, = R/3 and ¢, = 1000. The time-step is At = 1800 s so that one full revolution is com-
pleted in 576 time-steps (12 days). This setting is, for example, used by [38]. The initial condition is shown on Fig. 15(d).

2. In the literature pertaining to semi-Lagrangian schemes (e.g., [21,39]) the cosine hill dimensions are typically
R. =R7m/64, and , = 1 and the time-step is either At = 4050 s or At = 14,400 s so that in 12 days one full revolution
is completed in 256 or 72 time-steps.

4.2.2. Deformational flow tests on the sphere

Recently Nair and Jablonowski [37] introduced a new deformational benchmark test for advection schemes on the sphere.
The test consists of two deforming and moving vortices located at diametrically opposite sides of the sphere such that the
flow is time dependent, non-divergent, and the analytic solution is known at any time. This test combines the solid-body
rotation test [35] and the static deformational test [21]. It is referred to as the moving vortices test case and it is gaining
popularity in the literature [38].

The exact solution at any t is given by [37]

d . ;
w2, 0,t) =1 - tanh v sin(A' — w(0)t)], (46)
where (/, 0) is the rotated coordinate system with respect to the regular (4, 0) coordinates, d = dy cos (' is the radial distance

from the vortex center and w; is the angular velocity of the vortices. For a smooth deformational flow, the parameters y = 5,
do = 3 are used [37]. The scaled tangential velocity V, of the rotational motion is defined to be
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V.= u()#sechz(d) tanh(d), (47)
where the scale factor uy = 27R/(12 days), which indicates 12 model days are required for the full evolution of the vortices -
the same time taken for a complete revolution around the sphere. The angular velocity w,(0') varies with the vortex radial
distance Rd, and is defined by

y Ve/(Rd) if d#0
0 { 0 if d=0. (48)
which has the physical unit radians/seconds. The time dependent wind vector (u, v) for the moving vortex is given by
u(t) = ug(cos 0.cos ¢ + sin 0 cos Asin @) + R, [sin O.(t) cos 0 — cos Oc(t) cos(4 — Ac(t)) sin 0] (49)
v(t) = —ug sin A sin ¢ + Rw,[cos 0 (t) sin(4 — ¢(t))], (50)

where ¢ is the flow orientation parameter as in the case of solid-body rotation test and (/.(t), 0(t)) is the center of a moving
vortex. The initial vortex center is located at (i.(t = 0), 6.(t = 0)) = (o, 6p) and the initial conditions for the vortex field is
V(2,0 t =0). Note that the static vortices [21] are a special case of the moving vortices and can be obtained by ignoring
the solid-body rotation part (Eq. (49) and (50) with uy = 0). The detailed procedure for finding the exact departure point
positions (7, 6;) for the moving vortices is described in [37], and will not be discussed herein. We consider both static
and dynamic vortices for evaluating the CSLAM algorithm.

4.3. Results

4.3.1. Solid-body advection of a cosine hill

First we investigate the impact on accuracy, in terms of the standard error norms defined in (41)-(43), using different
orders of Gaussian quadrature for the outer integrals as well as varying the order of the reconstruction functions. For that
we use the solid-body advection of a cosine hill test case at resolution N. = 32 and ¢ = m/4, At = 4050 s and a total of
256 time-steps (one revolution). If N, is the number of Gaussian quadrature points the integration is exact for polynomials

Table 4

Standard error measures for the solid-body advection of a cosine hill for different orders of Gaussian quadrature (N is the number of Gaussian quadrature
points) for the outer line-integrals as well as a version of CSLAM not including the cross term in the reconstruction polynomial (CSLAM*). The trailing N refers
to the non-monotone (unlimited) version of CSLAM. The dimensions and parameters used here are: N.=32 (2.8125° resolution at equator),
¢ = m/4,At = 4050 s, 256 time-steps are used (one revolution), y, = 1,R. = R71/64.

Scheme Ng I I s
Solid-body rotation of cosine hill on the sphere
CSLAM*-N 2 0.0949 0.0536 0.0332
CSLAM-N 2 0.0764 0.0414 0.0254
CSLAM-N 3 0.0765 0.0414 0.0255
CSLAM-N 4 0.0765 0.0414 0.0255
CSLAM-N 5 0.0765 0.0414 0.0255
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Fig. 13. Standard error norms for the solid-body advection of a cosine hill for different orders of reconstructio